Copied to
clipboard

G = C22xC4xHe3order 432 = 24·33

Direct product of C22xC4 and He3

direct product, metabelian, nilpotent (class 2), monomial

Aliases: C22xC4xHe3, C62:11C12, C12.43C62, (C6xC12):8C6, C6.17(C6xC12), (C2xC62).14C6, C6.11(C2xC62), C62.37(C2xC6), (C2xC6).32C62, C2.1(C23xHe3), C23.3(C2xHe3), C32:7(C22xC12), (C23xHe3).6C2, (C2xHe3).39C23, (C22xC12).6C32, C22.5(C22xHe3), (C22xHe3).39C22, (C2xC6xC12):2C3, C3.1(C2xC6xC12), (C3xC6):6(C2xC12), (C3xC12):10(C2xC6), (C2xC6).17(C3xC12), (C2xC12).32(C3xC6), (C22xC6).22(C3xC6), (C3xC6).29(C22xC6), SmallGroup(432,401)

Series: Derived Chief Lower central Upper central

C1C3 — C22xC4xHe3
C1C3C6C3xC6C2xHe3C4xHe3C2xC4xHe3 — C22xC4xHe3
C1C3 — C22xC4xHe3
C1C22xC12 — C22xC4xHe3

Generators and relations for C22xC4xHe3
 G = < a,b,c,d,e,f | a2=b2=c4=d3=e3=f3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, fdf-1=de-1, ef=fe >

Subgroups: 513 in 297 conjugacy classes, 189 normal (12 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C6, C2xC4, C23, C32, C12, C12, C2xC6, C2xC6, C22xC4, C3xC6, C2xC12, C2xC12, C22xC6, C22xC6, He3, C3xC12, C62, C22xC12, C22xC12, C2xHe3, C2xHe3, C6xC12, C2xC62, C4xHe3, C22xHe3, C2xC6xC12, C2xC4xHe3, C23xHe3, C22xC4xHe3
Quotients: C1, C2, C3, C4, C22, C6, C2xC4, C23, C32, C12, C2xC6, C22xC4, C3xC6, C2xC12, C22xC6, He3, C3xC12, C62, C22xC12, C2xHe3, C6xC12, C2xC62, C4xHe3, C22xHe3, C2xC6xC12, C2xC4xHe3, C23xHe3, C22xC4xHe3

Smallest permutation representation of C22xC4xHe3
On 144 points
Generators in S144
(1 105)(2 106)(3 107)(4 108)(5 131)(6 132)(7 129)(8 130)(9 135)(10 136)(11 133)(12 134)(13 139)(14 140)(15 137)(16 138)(17 143)(18 144)(19 141)(20 142)(21 94)(22 95)(23 96)(24 93)(25 115)(26 116)(27 113)(28 114)(29 119)(30 120)(31 117)(32 118)(33 123)(34 124)(35 121)(36 122)(37 91)(38 92)(39 89)(40 90)(41 54)(42 55)(43 56)(44 53)(45 99)(46 100)(47 97)(48 98)(49 103)(50 104)(51 101)(52 102)(57 75)(58 76)(59 73)(60 74)(61 79)(62 80)(63 77)(64 78)(65 83)(66 84)(67 81)(68 82)(69 87)(70 88)(71 85)(72 86)(109 127)(110 128)(111 125)(112 126)
(1 45)(2 46)(3 47)(4 48)(5 53)(6 54)(7 55)(8 56)(9 71)(10 72)(11 69)(12 70)(13 91)(14 92)(15 89)(16 90)(17 94)(18 95)(19 96)(20 93)(21 143)(22 144)(23 141)(24 142)(25 51)(26 52)(27 49)(28 50)(29 83)(30 84)(31 81)(32 82)(33 75)(34 76)(35 73)(36 74)(37 139)(38 140)(39 137)(40 138)(41 132)(42 129)(43 130)(44 131)(57 123)(58 124)(59 121)(60 122)(61 127)(62 128)(63 125)(64 126)(65 119)(66 120)(67 117)(68 118)(77 111)(78 112)(79 109)(80 110)(85 135)(86 136)(87 133)(88 134)(97 107)(98 108)(99 105)(100 106)(101 115)(102 116)(103 113)(104 114)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)(129 130 131 132)(133 134 135 136)(137 138 139 140)(141 142 143 144)
(5 57 115)(6 58 116)(7 59 113)(8 60 114)(9 96 63)(10 93 64)(11 94 61)(12 95 62)(17 127 69)(18 128 70)(19 125 71)(20 126 72)(21 79 133)(22 80 134)(23 77 135)(24 78 136)(25 131 75)(26 132 76)(27 129 73)(28 130 74)(33 51 44)(34 52 41)(35 49 42)(36 50 43)(53 123 101)(54 124 102)(55 121 103)(56 122 104)(85 141 111)(86 142 112)(87 143 109)(88 144 110)
(1 37 83)(2 38 84)(3 39 81)(4 40 82)(5 57 115)(6 58 116)(7 59 113)(8 60 114)(9 63 96)(10 64 93)(11 61 94)(12 62 95)(13 119 99)(14 120 100)(15 117 97)(16 118 98)(17 69 127)(18 70 128)(19 71 125)(20 72 126)(21 133 79)(22 134 80)(23 135 77)(24 136 78)(25 131 75)(26 132 76)(27 129 73)(28 130 74)(29 45 139)(30 46 140)(31 47 137)(32 48 138)(33 51 44)(34 52 41)(35 49 42)(36 50 43)(53 123 101)(54 124 102)(55 121 103)(56 122 104)(65 105 91)(66 106 92)(67 107 89)(68 108 90)(85 111 141)(86 112 142)(87 109 143)(88 110 144)
(1 135 73)(2 136 74)(3 133 75)(4 134 76)(5 67 94)(6 68 95)(7 65 96)(8 66 93)(9 59 105)(10 60 106)(11 57 107)(12 58 108)(13 125 103)(14 126 104)(15 127 101)(16 128 102)(17 53 117)(18 54 118)(19 55 119)(20 56 120)(21 131 81)(22 132 82)(23 129 83)(24 130 84)(25 39 79)(26 40 80)(27 37 77)(28 38 78)(29 141 42)(30 142 43)(31 143 44)(32 144 41)(33 47 87)(34 48 88)(35 45 85)(36 46 86)(49 139 111)(50 140 112)(51 137 109)(52 138 110)(61 115 89)(62 116 90)(63 113 91)(64 114 92)(69 123 97)(70 124 98)(71 121 99)(72 122 100)

G:=sub<Sym(144)| (1,105)(2,106)(3,107)(4,108)(5,131)(6,132)(7,129)(8,130)(9,135)(10,136)(11,133)(12,134)(13,139)(14,140)(15,137)(16,138)(17,143)(18,144)(19,141)(20,142)(21,94)(22,95)(23,96)(24,93)(25,115)(26,116)(27,113)(28,114)(29,119)(30,120)(31,117)(32,118)(33,123)(34,124)(35,121)(36,122)(37,91)(38,92)(39,89)(40,90)(41,54)(42,55)(43,56)(44,53)(45,99)(46,100)(47,97)(48,98)(49,103)(50,104)(51,101)(52,102)(57,75)(58,76)(59,73)(60,74)(61,79)(62,80)(63,77)(64,78)(65,83)(66,84)(67,81)(68,82)(69,87)(70,88)(71,85)(72,86)(109,127)(110,128)(111,125)(112,126), (1,45)(2,46)(3,47)(4,48)(5,53)(6,54)(7,55)(8,56)(9,71)(10,72)(11,69)(12,70)(13,91)(14,92)(15,89)(16,90)(17,94)(18,95)(19,96)(20,93)(21,143)(22,144)(23,141)(24,142)(25,51)(26,52)(27,49)(28,50)(29,83)(30,84)(31,81)(32,82)(33,75)(34,76)(35,73)(36,74)(37,139)(38,140)(39,137)(40,138)(41,132)(42,129)(43,130)(44,131)(57,123)(58,124)(59,121)(60,122)(61,127)(62,128)(63,125)(64,126)(65,119)(66,120)(67,117)(68,118)(77,111)(78,112)(79,109)(80,110)(85,135)(86,136)(87,133)(88,134)(97,107)(98,108)(99,105)(100,106)(101,115)(102,116)(103,113)(104,114), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (5,57,115)(6,58,116)(7,59,113)(8,60,114)(9,96,63)(10,93,64)(11,94,61)(12,95,62)(17,127,69)(18,128,70)(19,125,71)(20,126,72)(21,79,133)(22,80,134)(23,77,135)(24,78,136)(25,131,75)(26,132,76)(27,129,73)(28,130,74)(33,51,44)(34,52,41)(35,49,42)(36,50,43)(53,123,101)(54,124,102)(55,121,103)(56,122,104)(85,141,111)(86,142,112)(87,143,109)(88,144,110), (1,37,83)(2,38,84)(3,39,81)(4,40,82)(5,57,115)(6,58,116)(7,59,113)(8,60,114)(9,63,96)(10,64,93)(11,61,94)(12,62,95)(13,119,99)(14,120,100)(15,117,97)(16,118,98)(17,69,127)(18,70,128)(19,71,125)(20,72,126)(21,133,79)(22,134,80)(23,135,77)(24,136,78)(25,131,75)(26,132,76)(27,129,73)(28,130,74)(29,45,139)(30,46,140)(31,47,137)(32,48,138)(33,51,44)(34,52,41)(35,49,42)(36,50,43)(53,123,101)(54,124,102)(55,121,103)(56,122,104)(65,105,91)(66,106,92)(67,107,89)(68,108,90)(85,111,141)(86,112,142)(87,109,143)(88,110,144), (1,135,73)(2,136,74)(3,133,75)(4,134,76)(5,67,94)(6,68,95)(7,65,96)(8,66,93)(9,59,105)(10,60,106)(11,57,107)(12,58,108)(13,125,103)(14,126,104)(15,127,101)(16,128,102)(17,53,117)(18,54,118)(19,55,119)(20,56,120)(21,131,81)(22,132,82)(23,129,83)(24,130,84)(25,39,79)(26,40,80)(27,37,77)(28,38,78)(29,141,42)(30,142,43)(31,143,44)(32,144,41)(33,47,87)(34,48,88)(35,45,85)(36,46,86)(49,139,111)(50,140,112)(51,137,109)(52,138,110)(61,115,89)(62,116,90)(63,113,91)(64,114,92)(69,123,97)(70,124,98)(71,121,99)(72,122,100)>;

G:=Group( (1,105)(2,106)(3,107)(4,108)(5,131)(6,132)(7,129)(8,130)(9,135)(10,136)(11,133)(12,134)(13,139)(14,140)(15,137)(16,138)(17,143)(18,144)(19,141)(20,142)(21,94)(22,95)(23,96)(24,93)(25,115)(26,116)(27,113)(28,114)(29,119)(30,120)(31,117)(32,118)(33,123)(34,124)(35,121)(36,122)(37,91)(38,92)(39,89)(40,90)(41,54)(42,55)(43,56)(44,53)(45,99)(46,100)(47,97)(48,98)(49,103)(50,104)(51,101)(52,102)(57,75)(58,76)(59,73)(60,74)(61,79)(62,80)(63,77)(64,78)(65,83)(66,84)(67,81)(68,82)(69,87)(70,88)(71,85)(72,86)(109,127)(110,128)(111,125)(112,126), (1,45)(2,46)(3,47)(4,48)(5,53)(6,54)(7,55)(8,56)(9,71)(10,72)(11,69)(12,70)(13,91)(14,92)(15,89)(16,90)(17,94)(18,95)(19,96)(20,93)(21,143)(22,144)(23,141)(24,142)(25,51)(26,52)(27,49)(28,50)(29,83)(30,84)(31,81)(32,82)(33,75)(34,76)(35,73)(36,74)(37,139)(38,140)(39,137)(40,138)(41,132)(42,129)(43,130)(44,131)(57,123)(58,124)(59,121)(60,122)(61,127)(62,128)(63,125)(64,126)(65,119)(66,120)(67,117)(68,118)(77,111)(78,112)(79,109)(80,110)(85,135)(86,136)(87,133)(88,134)(97,107)(98,108)(99,105)(100,106)(101,115)(102,116)(103,113)(104,114), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (5,57,115)(6,58,116)(7,59,113)(8,60,114)(9,96,63)(10,93,64)(11,94,61)(12,95,62)(17,127,69)(18,128,70)(19,125,71)(20,126,72)(21,79,133)(22,80,134)(23,77,135)(24,78,136)(25,131,75)(26,132,76)(27,129,73)(28,130,74)(33,51,44)(34,52,41)(35,49,42)(36,50,43)(53,123,101)(54,124,102)(55,121,103)(56,122,104)(85,141,111)(86,142,112)(87,143,109)(88,144,110), (1,37,83)(2,38,84)(3,39,81)(4,40,82)(5,57,115)(6,58,116)(7,59,113)(8,60,114)(9,63,96)(10,64,93)(11,61,94)(12,62,95)(13,119,99)(14,120,100)(15,117,97)(16,118,98)(17,69,127)(18,70,128)(19,71,125)(20,72,126)(21,133,79)(22,134,80)(23,135,77)(24,136,78)(25,131,75)(26,132,76)(27,129,73)(28,130,74)(29,45,139)(30,46,140)(31,47,137)(32,48,138)(33,51,44)(34,52,41)(35,49,42)(36,50,43)(53,123,101)(54,124,102)(55,121,103)(56,122,104)(65,105,91)(66,106,92)(67,107,89)(68,108,90)(85,111,141)(86,112,142)(87,109,143)(88,110,144), (1,135,73)(2,136,74)(3,133,75)(4,134,76)(5,67,94)(6,68,95)(7,65,96)(8,66,93)(9,59,105)(10,60,106)(11,57,107)(12,58,108)(13,125,103)(14,126,104)(15,127,101)(16,128,102)(17,53,117)(18,54,118)(19,55,119)(20,56,120)(21,131,81)(22,132,82)(23,129,83)(24,130,84)(25,39,79)(26,40,80)(27,37,77)(28,38,78)(29,141,42)(30,142,43)(31,143,44)(32,144,41)(33,47,87)(34,48,88)(35,45,85)(36,46,86)(49,139,111)(50,140,112)(51,137,109)(52,138,110)(61,115,89)(62,116,90)(63,113,91)(64,114,92)(69,123,97)(70,124,98)(71,121,99)(72,122,100) );

G=PermutationGroup([[(1,105),(2,106),(3,107),(4,108),(5,131),(6,132),(7,129),(8,130),(9,135),(10,136),(11,133),(12,134),(13,139),(14,140),(15,137),(16,138),(17,143),(18,144),(19,141),(20,142),(21,94),(22,95),(23,96),(24,93),(25,115),(26,116),(27,113),(28,114),(29,119),(30,120),(31,117),(32,118),(33,123),(34,124),(35,121),(36,122),(37,91),(38,92),(39,89),(40,90),(41,54),(42,55),(43,56),(44,53),(45,99),(46,100),(47,97),(48,98),(49,103),(50,104),(51,101),(52,102),(57,75),(58,76),(59,73),(60,74),(61,79),(62,80),(63,77),(64,78),(65,83),(66,84),(67,81),(68,82),(69,87),(70,88),(71,85),(72,86),(109,127),(110,128),(111,125),(112,126)], [(1,45),(2,46),(3,47),(4,48),(5,53),(6,54),(7,55),(8,56),(9,71),(10,72),(11,69),(12,70),(13,91),(14,92),(15,89),(16,90),(17,94),(18,95),(19,96),(20,93),(21,143),(22,144),(23,141),(24,142),(25,51),(26,52),(27,49),(28,50),(29,83),(30,84),(31,81),(32,82),(33,75),(34,76),(35,73),(36,74),(37,139),(38,140),(39,137),(40,138),(41,132),(42,129),(43,130),(44,131),(57,123),(58,124),(59,121),(60,122),(61,127),(62,128),(63,125),(64,126),(65,119),(66,120),(67,117),(68,118),(77,111),(78,112),(79,109),(80,110),(85,135),(86,136),(87,133),(88,134),(97,107),(98,108),(99,105),(100,106),(101,115),(102,116),(103,113),(104,114)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128),(129,130,131,132),(133,134,135,136),(137,138,139,140),(141,142,143,144)], [(5,57,115),(6,58,116),(7,59,113),(8,60,114),(9,96,63),(10,93,64),(11,94,61),(12,95,62),(17,127,69),(18,128,70),(19,125,71),(20,126,72),(21,79,133),(22,80,134),(23,77,135),(24,78,136),(25,131,75),(26,132,76),(27,129,73),(28,130,74),(33,51,44),(34,52,41),(35,49,42),(36,50,43),(53,123,101),(54,124,102),(55,121,103),(56,122,104),(85,141,111),(86,142,112),(87,143,109),(88,144,110)], [(1,37,83),(2,38,84),(3,39,81),(4,40,82),(5,57,115),(6,58,116),(7,59,113),(8,60,114),(9,63,96),(10,64,93),(11,61,94),(12,62,95),(13,119,99),(14,120,100),(15,117,97),(16,118,98),(17,69,127),(18,70,128),(19,71,125),(20,72,126),(21,133,79),(22,134,80),(23,135,77),(24,136,78),(25,131,75),(26,132,76),(27,129,73),(28,130,74),(29,45,139),(30,46,140),(31,47,137),(32,48,138),(33,51,44),(34,52,41),(35,49,42),(36,50,43),(53,123,101),(54,124,102),(55,121,103),(56,122,104),(65,105,91),(66,106,92),(67,107,89),(68,108,90),(85,111,141),(86,112,142),(87,109,143),(88,110,144)], [(1,135,73),(2,136,74),(3,133,75),(4,134,76),(5,67,94),(6,68,95),(7,65,96),(8,66,93),(9,59,105),(10,60,106),(11,57,107),(12,58,108),(13,125,103),(14,126,104),(15,127,101),(16,128,102),(17,53,117),(18,54,118),(19,55,119),(20,56,120),(21,131,81),(22,132,82),(23,129,83),(24,130,84),(25,39,79),(26,40,80),(27,37,77),(28,38,78),(29,141,42),(30,142,43),(31,143,44),(32,144,41),(33,47,87),(34,48,88),(35,45,85),(36,46,86),(49,139,111),(50,140,112),(51,137,109),(52,138,110),(61,115,89),(62,116,90),(63,113,91),(64,114,92),(69,123,97),(70,124,98),(71,121,99),(72,122,100)]])

176 conjugacy classes

class 1 2A···2G3A3B3C···3J4A···4H6A···6N6O···6BR12A···12P12Q···12CB
order12···2333···34···46···66···612···1212···12
size11···1113···31···11···13···31···13···3

176 irreducible representations

dim111111113333
type+++
imageC1C2C2C3C4C6C6C12He3C2xHe3C2xHe3C4xHe3
kernelC22xC4xHe3C2xC4xHe3C23xHe3C2xC6xC12C22xHe3C6xC12C2xC62C62C22xC4C2xC4C23C22
# reps1618848864212216

Matrix representation of C22xC4xHe3 in GL5(F13)

120000
012000
00100
00010
00001
,
120000
01000
00100
00010
00001
,
120000
08000
00800
00080
00008
,
90000
03000
00100
00090
00003
,
10000
01000
00900
00090
00009
,
10000
03000
00010
00001
00100

G:=sub<GL(5,GF(13))| [12,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[12,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[12,0,0,0,0,0,8,0,0,0,0,0,8,0,0,0,0,0,8,0,0,0,0,0,8],[9,0,0,0,0,0,3,0,0,0,0,0,1,0,0,0,0,0,9,0,0,0,0,0,3],[1,0,0,0,0,0,1,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,9],[1,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0] >;

C22xC4xHe3 in GAP, Magma, Sage, TeX

C_2^2\times C_4\times {\rm He}_3
% in TeX

G:=Group("C2^2xC4xHe3");
// GroupNames label

G:=SmallGroup(432,401);
// by ID

G=gap.SmallGroup(432,401);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-3,-2,-3,504,760]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^4=d^3=e^3=f^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,f*d*f^-1=d*e^-1,e*f=f*e>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<